问答题
P是一个数域,N是P[x]中的一个子集,满足f(x),g(x)∈N,则f(x)+g(x)∈N;对f(x)∈N及任何q(x)f(x)∈N,证明:N中有d(x),满足N={d(x)q(x)丨q(x)∈P[x]}。
问答题 求12+22+…+n2及13+23+…+n3。
问答题 证明:对P[x]中任何m次多项式f(x),必有P[x]中次数≤m+1的多项式G(x)满足G(n)=f(0)+f(1)+…+f(n-1)对任何n≥1的整数成立。
问答题 设f(x)及G(x)是P[x]中m次及≤m+1次多项式,证明:G(n)=对所以n≥1成立的充分必要条件是G(x+1)-G(x)=f(x)且G(0)=0。