问答题
设f(x)及G(x)是P[x]中m次及≤m+1次多项式,证明:G(n)=对所以n≥1成立的充分必要条件是G(x+1)-G(x)=f(x)且G(0)=0。
问答题 设整系数多项式f(x)=anxn+an-1xn-1+…+a0,它没有理根,又有素数p满足: 证明:f(x)在Q[x]中不可约。
问答题 设f(x),g(x),h(x)∈P[x],且次数皆大于等于1,证明:f(g(x))=h(g(x))的充分必要条件为f(x)=h(x)。
问答题 设α1,α2,…,αn为n个彼此不等的实数,f1(x),…,fn(x)是n个次数不大于n-2的实系数多项式,证明:。