问答题
设f(x)=x2+2x+3∈P2(x).
求基1,x,x2到基1,x,(x-1)2的过渡矩阵P。
问答题 分别求出γ=(1,1,1)在α1,α2,α3及β1,β2,β3下的坐标。
单项选择题 设m×n矩阵A的秩为R(A)=n-1,且ξ1,ξ2是齐次方程Ax=0的两个不同的解,则Ax=0的通解为()
问答题 令β1=α1+α2,β2=α2+α3,β3=α1+α3,求出α1,α2,α3到β1,β2,β3的过渡矩阵P1及β1,β2,β3到α1,α2,α3的过渡矩阵P2。